On Riccati equations, orthogonal polynomials and fast filtering algorithm

نویسنده

  • Yishao Zhou
چکیده

In this note we cast parametrization of certain type of covariance extension problems in polynomial model. We show that the Kimura form of state space realization for maximum entropy solution to Carathéodory’s extension problem is Riccati balanced parametrization. As an application we provide a heuristic algorithm for finding solutions to minimum-phase spectral factor with poles and zeros, given partial covariance sequence, by model reduction technique and fast filtering algorithms using Kimura-Georgiou parametrization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fourth-order Difference Equation Satisfied by the Associated Orthogonal Polynomials of the Delta-Laguerre-Hahn Class

Starting from the D!-Riccati Diierence equation satissed by the Stieltjes function of a linear functional, we work out an algorithm which enables us to write the general fourth-order diierence equation satissed by the associated of any integer order of orthogonal polynomials of the-Laguerre-Hahn class. Moreover, in classical situations (Meixner, Charlier, Krawtchouk and Hahn), we give these dii...

متن کامل

A Fast and Efficient On-Line Harmonics Elimination Pulse Width Modulation for Voltage Source Inverter Using Polynomials Curve Fittings

The paper proposes an algorithm to calculate the switching angles using harmonic elimination PWM (HEPWM) scheme for voltage source inverter. The algorithm is based on curve fittings of a certain polynomials functions. The resulting equations require only the addition and multiplication processes; therefore, it can be implemented efficiently on a microprocessor. An extensive angle error analysis...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis

In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...

متن کامل

A Multishift Algorithm for the Numerical Solution of Algebraic Riccati Equations

Abstract. We study an algorithm for the numerical solution of algebraic matrix Riccati equations that arise in linear optimal control problems. The algorithm can be considered to be a multishift technique, which uses only orthogonal symplectic similarity transformations to compute a Lagrangian invariant subspace of the associated Hamiltonian matrix. We describe the details of this method and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000